

UNIT TEST 05 2027 A/L ICT

STUDENT	עונ		ŀ
ـــــــــــــــــــــــــــــــــــــ	P	0	
NAME			
7///			

ITspher

Become a Tech-Savvy Entrepreneur

DATE		

1.	In an eight-bit system the (1) are on the left. (2) have lesser magnitud (3) are on the right. (4) are on the right and h (5) none of the above	e than low-ord	er bits.		
2.	The binary subtraction 1 (1) difference =1 (3) difference =1 (5) All of the above	-1 = borrow =0 borrow =1		(2) difference =0 (4) difference =0	borrow =1 borrow =0
3.	The binary addition 0 + 1 (1) sum = 0 (3) sum = 0 (5) All of the above	1 = carry = 1 carry = 0		(2) sum = 1 (4) sum = 1	carry = 1 carry = 0
4.	The binary addition 1+ 0 (1) sum = 1 (3) sum = 0 (5) All of the above	carry = 1		(2) sum = 1 (4) sum = 0	carry = 0 carry = 1
5.	Consider the two binary of G? (1) 01110001 (4) 10000001	numbers E = 1	0000000 and F (2) 10000000 (5) 10011101	= 00001111. If $G = I$	E - F , what will be the value (3) 01111111
6.	Consider the two binary	numbers $A = 0$	01110000 and B	= 00011000. If C =	A - B , what will be the value
	of C? (1) 01101000 (4) 00011000	M	(2) 01010000 (5) 10011001		(3) 01011000
7.		numbers $A = 0$	00010111 and B	= 00101001. If C =	$\mathbf{A} + \mathbf{B}$, what will be the value
	of C? (1) 01000000 (4) 00110011		(2) 00101111 (5) 00100010		(3) 01100000
8.	-	numbers $A = 0$	01110010 and B	$= 01001000$. If $\mathbf{C} = 0.001000$	A - B , what will be the value
	of C? (1) 00011010 (4) 01110010		(2) 00111100 (5) 00000010		(3) 00101010
9.	Consider the two binary	numbers L = 0	1101110 and M	= 00100010. If N =	$\mathbf{L} + \mathbf{M}$, what will be the
	value of N? (1) 10010000 (4) 01110110		(2) 11001001 (5) 01000110		(3) 01101110

	two binary numbers A =	= 11001111 and $B = 01$	110000. If $C = A - 1$	B , what will be the value
of C? (1) 1000111 (4) 0101111		(2) 01111111 (5) 01010011		(3) 01101111
11. What is the (1) 1	decimal value of 2 ¹ ? (2) 4	(3) 2	(4) 0	(5) 0.5
12. What is the (1) 0.1	decimal value of 2 ⁻¹ ? (2) 0.25	(3) 0.5	(4) 0.05	(5) 0.75
13. The binary a (1) 0001 ₂	ddition of $1 + 1 + 1 + 1 = $	(3) 01002	(4) 1111 ₂	(5) 1101 ₂
14. Which binar (1) 1.0000 (4) 0.1000	y value equals 2 ⁻¹ ?	(2) 0.0010 (5) 0.0101		(3) 0.0001
15. Convert the (1) 175.65 (4) 174.75	binary number 10101110	0.11000000 to decimal. (2) 174.875 (5) 174.652	05	(3) 175.55
16. The binary s (1) 00001116 (4) 0000101		- 10100100 =		(3) 00010100
17. The octal add (1) 235	dition of 157 + 64 = (2) 244	(3) 243	(4) 251	(5) 263
18. The octal add (1) 1007	dition of 725 + 72 = (2) 1117	(3) 1015	(4) 1017	(5) 1027
19. The octal sul (1) 471	btraction of 640 – 157 = (2) 463	(3) 551	(4) 460	(5) 461
20. The hexadec (1) (5F.8) ₁₆	imal number for (95.5) ₁₀ (2) (9A.B) ₁₆	is (3) (2E.F) ₁₆	(4) (5A.4) ₁₆	(5) (2F.8) ₁₆
21. The hexadec (1) A4 ₁₆	imal equivalent of a bina (2) A5 ₁₆	ry 10100101 is (3) C3 ₁₆	(4) B5 ₁₆	(5) A3 ₁₆
22. Which binar (1) 0100000 (4) 1000010		(2) 10111000010 (5) 10011101010		(3) 10010001010
23. The hexadec (1) 6A	imal addition of 2A + 3F (2) 68	S =	(4) 79	(5) 69
24. The hexadec (1) 86B	imal addition of 7C9 + A (2) 96C	A3 =	(4) 85C	(5) 86C
	imal subtraction of 1F4 - (2) 149	-9B =	(4) 158	(5) 159
		2.2.		

26.		=	lition of 277_8 and 66_8 is		Ec	(5) E (
	(1) E5	(2) F5	(3) D4	(4)	F6	(5) E6
27.	The binary equiva (1) 101011111102 (4) 101011110102		f 576 ₈ and 4567 ₈ is, (2) 111011110101 (5) 100011110101			(3) 101011111101
28.	The decimal equiv (1) 312	valent for the addition (2) 314	of 345 ₈ and 123 ₈ is, (3) 212	(4)	313	(5) 213
29.	The hexa-decimal (1) D7	equivalent for the sub (2) D8	otraction of 654 ₈ and 34 (3) C7	45 ₈ is, (4) C6		(5) C8
30.	The binary equiva (1) 101101001 (4) 100011001	lent for the subtraction	n of 666 ₈ and 255 ₈ is, (2) 100001001 (5) 100000001			(3) 111101001
31.	The decimal equiv	valent for the subtracti (2) 115	on of 654 ₈ and 467 ₈ is, (3) 116	(4)	117	(5) 118
32.	The octal equivale (1) 635	ent for the addition of (2) 636	A1 ₁₆ and FD ₁₆ is, (3) 536	(4)	535	(5) 534
33.	The decimal equiv	valent for the addition (2) 341	of C9 ₁₆ and E6 ₁₆ is, (3) 430	(4)	441	(5) 431
34.	The binary equiva (1) 011110001011 (4) 000110110011		f C2 ₁₆ and C1 ₁₆ is, (2) 000110011111 (5) 000110000011			(3) 000110000010
35.	The octal equivale (1) 204	ent for the subtraction (2) 206	of the F1 ₁₆ and 6B ₁₆ is. (3) 205	, (4)	175	(5) 208
36.	The decimal equiv	valent for the subtraction (2) 1052	on of the 876 ₁₆ and 456 (3) 1054	5 ₁₆ is, (4)	1053	(5) 1056
37.	The binary equiva (1) 1001000001 (4) 1001000011	lent for the subtraction	n of the 45C ₁₆ and 21B (2) 1001001101 (5) 1001000111	₁₆ is,		(3) 1001000101
38.	The binary equiva (1) 101101101 (4) 101001100	lent for the subtraction	n of decimal 567 ₁₀ and (2) 101001101 (5) 101101101	234 ₁₀ is	8,	(3) 101111101
39.	The octal equivale (1) 550	ent for the subtraction (2) 560	of decimal 999 ₁₀ and 6 (3) 650	39 ₁₀ is, (4)	551	(5) 576
40.	The hexa-decimal (1) 13B	equivalent for the sub (2) 14A	otraction of decimal 765 (3) 12C	5 ₁₀ and (4)	434 ₁₀ is, 13A	(5) 14B
41.	The addition of 27 (1) 366	76 ₈ and binary 101100 (2) 367	01 ₂ in decimal is, (3) 377	(4)	365	(5) 376
						- 21

42.	The addition of 11 (1) 270	1110110 ₂ and hexa-dec (2) 271	cimal 1A ₁₆ is in decimal (3) 275	al, (4) 272	2	(5) 273
43.	The addition of 77 (1) 678	74 ₈ and hexa-decimal <i>a</i> (2) 786	AB ₁₆ in decimal is, (3) 679	(4)	680	(5) 677
44.	The subtraction of (1) 2285	f hexa-decimal A9C ₁₆ (2) 2284	and decimal 431 ₁₀ in d (3) 2283	ecimal (4)	is, 2286	(5) 2287
45.	The subtraction of (1) 3010	f octal 6231 ₈ and binar (2) 3013	y 11010010 ₂ in decima (3) 3014	al is, (4)	3012	(5) 3015
46.	The binary represe (1) 100000110010 (4) 100011110010	0	n of octal 675 ₈ and hex (2) 100000110110 (5) 111000110010	a-decin	nal 675 ₁₆ is,	(3) 100000111010
47.	The decimal repre	esentation of the addition (2) 8233	on of the binary 11110 (3) 8231	111 ₂ an (4)	d decimal 7986 8234	5 ₁₀ is, (5) 8235
48.	The octal represer (1) 4220	ntation of the addition (2) 4223	of decimal 567 ₁₀ and h (3) 5224	exa-dec (4)	cimal 65A ₁₆ is, 4221	(5) 4222
49.	The hexa-decimal (1) 1116	representation of the s (2) A111	subtraction of decimal (3) 1118	4566 ₁₀ (4)	and binary 101 11F	11111 ₂ is, (5) 1117
50.	The binary represe (1) 11001110 (4) 11101111	entation of the subtract	tion of the 670 ₈ and 23 (2) 10101110 (5) 11001010	8 ₁₀ is,		(3) 11101110

PART II

Structured Essay

1.	servers, or running heavy simulations for your ICT project. You decide the OS, memory size, and software, while AWS handles the hardware, electricity, and maintenance.						
	(i) Which type of cloud service is being provided in the above scenario?						
	(ii) You need to develop a small web app for your coursework. For that purpose you use Heroku or Google App Engine to upload the code. You don't need to manage servers or databases — you just focus on writing and testing your program. Which type of cloud service is being used here?						
	(iii) You use Google Docs or Canva directly through your web browser to type assignments or design posters. Which type of cloud service is being used here?						
	(b) Bob , a university student, stores his project files and personal documents on a free cloud storage account. One day, he receives an email that looks like it's from the cloud provider asking him to "verify his login details." Without checking carefully, he enters his username and password through the link in the email. A few hours later, he logs into his account and finds out that some of his confidential documents — including his research work are missing.						
	(i) What is the technical issue that has occurred in the above scenario, due to the use of cloud services?						
	(ii) Suggest two methods to avoid such situations, while using cloud services.						
	(iii) Write three advantages of using a cloud service.						
2.	(a) Read the following two scenarios carefully.						
	1 – When scientists at a pharmaceutical company are developing a new medicine, they need to test millions of possible chemical combinations to see which ones could work safely in the human body. Instead of relying on one powerful computer, the company connects many computers located in different branches and laboratories. Each computer takes a small portion of the research data and performs calculations on it. Once every computer finishes its assigned task, all results are combined to form a complete analysis. This approach allows the company to finish large-scale experiments in a fraction of the time it would take on a single computer.						
	2 – A 3D animator is creating a realistic movie scene using special software. Rendering one frame of the scene requires complex calculations — lighting, shadows, reflections, and textures. Instead of one processor handling everything step by step, the computer divides the rendering work into smaller pieces						

them to form the complete final image. This helps the designer finish animations much faster and keep up with production deadlines. (i) Identify the type of computing method used in scenario 1. (ii) Mention two advantages of using this computing method in the given situation. Α.... (iii) Mention one drawback of using this computing method in the given situation. (iv) Identify the type of computing method used in scenario 2. (v) Mention one advantage of using this computing method in the given situation. (vi) Mention two drawbacks of using this computing method in the given situation. (b) Simply explain the function of the following terms, based on the fetch-decode- execute cycle. (i) Fetch – (ii) Decode – (iii) Execute –

and lets multiple processors work on them at the same time. Once each part is done, the system merges

3. (a) Copy down the following table to your answer sheet and complete it.

Binary	Octal	Decimal	Hexa-Decimal
101010110			
			C16
		999	
	34562		

(b) Answer the questions below according to the following paragraph.

Mala took an amount of 011111110₂ rupees to the shop and bought two mangoes for 25.50 rupees and a pineapple for 62₈ rupees.

- (i) Calculate the amount that Mala took to the shop, in base 8.
- (ii) Calculate the value of mangoes bought by Mala in hexa-decimal.
- (iii) Calculate the price of a pineapple in binary.
- (iv) Add the total amount she spent on fruits, in binary.

PART II

Essay Type

1. (a) This is a part of a excel sheet of a salary sheet.

Salary Sheet - January 2023					
Employee Name	Emp No.	Basic Salary	OT hours	OT amount	Net Salary
Mr. N.S. Perera	E1235	Rs. 58,000.00	24	24000	Rs. 82,000.00
Mr. N.S. Silva	E3476	Rs. 65,500.00	21	21000	Rs. 86,500.00
Mr. Gamini Fernando	E2376	Rs. 58,000.00	0	0	Rs. 58,000.00
Mr. Amantha Silva	E6543	Rs. 62,000.00	20	20000	Rs. 82,000.00
				Total Salary	Rs. 308,500.00

- (i) Write down one qualitative data and quantitative data from the above sheet.
- (ii) According to this sheet, list down two information, that is going to be processed by this sheet.
- (iii) The company is going to develop a new system to Human resource management. Write down two data gathering techniques.
- (iv) Instead of a manual signed sheet, they are going to introduce a fingerprint reader. Write down two advantages of direct data input methods rather than keyboard.
- b) Saman used his desktop computer to do online classes. But sometimes he understood that his computer speed is not adequate to do his work.
- (i) Write down two suggestions that you would do to increase the performance of the computer.
- (ii) Saman uses a CRT monitor. Write down two disadvantages of using CRT.
- (iii) CRT can be considered as e-waste. Write down a solution to mitigate e-waste.
- (iv) Write down what is meant by digital divide.
- (v) Write down two ways to mitigate digital divide.
- 2. (a) (i) Draw the fetch execute cycle and briefly describe each unit.
 - (ii) Write 3 registers that are often active during fetch-decode-execute and write their functions separately.
 - (b) (i) Write 2 differences between Level 1, Level 2, and Level 3 cache.
 - (ii) What are the main components of the Von-Neumann architecture?
 - (c) Give examples for each of the following:
 - (i) Parallel computing
 - (ii) Grid computing
 - (iii) Multi-core processing

(d) Match each of the given sentences $(1) - (v)$ relating to computer registers with the most suitable item
from the list below.
List = [Program Counter (PC), Accumulator Register (ACC), Memory Buffer/Data Register
(MBR/MBR), Memory Address Register (MAR), Current Instruction register (CIR)]
ian incrementing counter that keeps track of the next memory address of the
instruction that is to be executed once the execution of the current instruction is completed.
ii the address in main memory that is currently being read or written
iii a two-way register that holds data fetched from memory (and ready for the CPU to
process) or data waiting to be stored in memory.
iv a temporary holding ground for the instruction that has just been fetched from
memory.
v is used for storing data for ALU to process and the results those are produced by the
ALU.

