

2025 MODEL PAPER 03

MCQ - Analyzation

Model Paper 03 Marking Scheme

PART I – MCQ

1) 4	11) 1	21) 3	31) 3	41) 1
2) 2	12) 1	22) 4	32) 2	42) 2
3) 3	13) 1	23) 1	33) 2	43) 1
4) 4	14) 1	24) 3	34) 1	44) 2
5) 2	15) 1	25) 4	35) 1	45) 3
6) 2	16) 2	26) 3	36) 1	46) 2
7) 1	17) 2	27) 4	37) no answer	47) 5
8) <mark>2</mark>	18) 3	28) 3	38) 4	48) 3
9) 4	19) 3	29) 4	39) 3	49) 2
10) 2	20) 4	30) 1	40) 5	50) 3

1) (4) Universal Automatic Computer

2) (2) ENIAC

They designed and built **ENIAC** (1945–46). (They later founded the company that produced UNIVAC, but their famous invention is ENIAC.)

3) (3) Vacuum Tubes

1st-gen machines (1940s-mid-1950s) used thermionic **vacuum tubes**. Transistors/ICs came in later generations.

- **4)** (4) + 17
- 5) (2) 11110111
- **6)** (2) AND

7) (1) $(X+Y)Z \oplus X$

- Left gate is OR: output = $\mathbf{X} + \mathbf{Y}$.
- Middle gate is AND with Z: output = $(X + Y) \cdot Z$.
- Rightmost gate is XOR combining that with X: $\mathbf{F} = \mathbf{X} \oplus ((\mathbf{X} + \mathbf{Y}) \cdot \mathbf{Z})$, i.e. $(\mathbf{X} + \mathbf{Y})\mathbf{Z} \oplus \mathbf{X}$.
- 8) (2) $X' \cdot Y' + Z'$
- 9) (4) X'Z' + YZ

10) (2) Paging

Paging is the memory-management technique where the OS moves fixed-size pages between secondary storage (backing store) and main memory on demand.

11) (1) Logical address

A running program generates logical (virtual) addresses; the MMU translates them to physical addresses.

12) (1) Each process

Every process has its own page table that maps its virtual pages to physical frames.

13) (1) (96)₁₀

14) (1) Enough total memory exists to satisfy a request but it is not contiguous

That is the definition of **external fragmentation**—free memory is split into pieces too small/too scattered to satisfy a request that needs one contiguous block.

15) (1) Frames

In paging, physical memory is divided into fixed-size **frames**.

16) (2) Pages

Logical (virtual) memory is divided into equal-size pages (mapped onto frames).

17) (2) Page number & page offset

In a paged virtual memory system, every logical (virtual) address is split into:

- **Page number** identifies which virtual page.
- **Page offset** displacement inside that page.

18) (3) Page

The page table holds, for each virtual page, the base (frame) address in physical memory.

19) (3) Frame

The OS keeps a **frame table** to record which physical frames are allocated, how many exist, and how many are free.

20) (4) Turn around

Paging involves page faults and disk I/O which lengthen the overall **turnaround time** (total time from job submission to completion). It can indirectly raise waiting and execution times too, but the key textbook effect is increased turnaround.

21) (3) Optical fiber

Among the listed media, **optical fiber** offers the highest transmission speed and bandwidth.

22) (4) All of the mentioned

The physical layer specifies:

- mechanical specs of connectors and cables,
- electrical signal levels,
- and optical/IR specifications.
 All of these are its responsibility.

23) (1) Data link layer

The **data link layer** is the lowest layer that translates network-layer logical communication into hardware-specific operations (framing, MAC addressing, etc.) for the physical medium.

24) (3) Multiplexing

Multiplexing allows multiple signals/users to share a single channel by dividing it in time, frequency, or code.

25) (4) Password

Among key card, fingerprint, retina pattern and password, a simple password is generally the easiest to guess or steal. Biometric methods and physical tokens (key card) are stronger.

26) (3) P@ssw0rd

A strong password mixes uppercase, lowercase, numbers, and symbols. "P@ssw0rd" contains all these varieties, unlike the date or a simple word.

27) (4) Having change password every 2 years

Good policy requires *regular* password changes (months, not years). Waiting two years is far too long and is **not** best practice.

- 28) (2) C and D only
- 29) (4) 5
- **30**) (1) 172.16.112.0
- **31**) (3) 172.16.64.0
- 32) (2) 8 subnets, 8,190 hosts each

33) (2) Secondary memory

Swap space (paging file) lives on disk/SSD (backing store), not in primary memory.

34) (1) it is spending more time paging than executing

That is the textbook definition of **thrashing**—excessive page faults keep the CPU busy swapping instead of running.

35) (1) Delayed until run time

If a process can move during execution, address binding must be **dynamic** (done at run time) so relocation can be adjusted.

36) (1) Memory manager

The OS's **memory manager** (swapper/pager) is responsible for swapping processes in and out of main memory.

- 37) 0100000000001
- 38) (4) Page 5
- **39**) (3) The address maps to frame 001.
- 40) (5) 7

41) (1) 1NF (First Normal Form)

The table has atomic values (so it's in 1NF) but attributes like **Name** depend only on **StudentID** and **CourseName/Instructor** depend only on **CourseID** while the natural key is (**StudentID**, **CourseID**) for enrollments. Those **partial dependencies** violate 2NF, so it's **only** in 1NF.

42) (2) SELECT DISTINCT CourseName FROM Student;

DISTINCT removes duplicates and returns each course name once. (Option 1 would include repeats; the others are invalid/non-standard.)

43)(1) SELECT Name FROM Student WHERE CourseName = 'Databases';

The question asks for "all students enrolled" in that course—the students' **names** whose **CourseName** equals "Databases."

44) (2) UPDATE Student SET Instructor = 'Dr. Lee' WHERE CourseName = 'Algorithms'; We update the **Instructor** for the row(s) where **CourseName** is "Algorithms."

45) (3) $960 \times 1024 \rightarrow 983,040$ bytes

46) (2) Computer Virus

A computer **virus** spreads by inserting copies of itself into other executables/documents.

47) (5) MSN

Internet Explorer, Mozilla Firefox, and Google Chrome are web browsers. **MSN** is a web portal/service (not a browser).

48) (3) RAM

RAM is **primary, volatile** memory, not secondary storage. Floppy disk, optical disk, flash drive, and DVD are secondary storage.

49) (2) Q only

- \mathbf{P} (ROM is volatile) \rightarrow **False** (ROM is non-volatile).
- \mathbf{Q} (RAM is volatile) \rightarrow **True**.
- R (Secondary memory is volatile) → False (secondary storage is non-volatile).
 Hence only Q is true.

50) (3) URL

